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ABSTRACT

The Defence Research Establishment Ottawa (DREO) desigped
and constructed "a high performance analog rebalance loopAfor
the Canadian Strapdown Gyroscope (CSG-2). This instrument is a
potentially low cost, near inertial grade, two
degree-of-freedom, tuned-rotor gyro designed and manufactured
by Litton Systems Canada Ltd. under contract to DREO. The
resulting loops are analyzed extensively from a control systems
point of view with the examination of such properties as
closed-loop stability, frequency and time responses and, to
some extent, stability margin, as interpreted from

multivariable generalizations of classical control-theoretic

notions of Nyquist plots and root locii. The results indicate
that the loops will provide sufficient closed-loop performance
to achieve the desired goals of bandwidth, maximum input rate,

low cross-axis coupling and acceleration compensation.
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RESUME

Le Centre de recherches pour la de'fense/Ottawa (CRDO) a
conqu et fabrique' une boucle analogique de r6tablissement

d'4quilibre tre's performante pour le Gyroscope canadien a6
composants lids (CSG-2). Ce dispositif quasi inertiel, 'a deux
degre's de liberte', & rotor accorde6 et dont la fabrication

pourra peut-etre exiger peu de frais, a 6te' conqu et fabriqu6

par Litton Systems Canada Ltd. pour le compte du CRDO. Les
boucles r6alise'es sont analys~es 'a fond du point de vue des
syst~mes de commande, en particulier en ce gui a trait aux
proprieftes de stabilit6 en boucle ferm~e, de r~ponse temporelle

et en fre'quence et, jusquIA un certain point# la marge de
stabilit6, par lointerpr6tation des g6ne'ralisations
multivariables des concepts classiques de contr6le des

variables the~oriquos des diagrammes de Nyquist et des lioux des
racines. Les resultats indiquent quo la performance en boucle

ferm6e do Cos dispositifs permettra d'obtenir les
caract6ristiques n~cessaires, du point de vue de la largeur de
bande, du d6bit d'entre~e minimal, du faible couplage entro los
axes et de la compensation d'accilgration.



CONTENTS

ABSTRACT .... .................. . .... . iii

RESUME . . . . . .... . . . . . . . .. ..................... v

CONTENTS .......... . ............. . . . . . . vii

FIGURES . . . . . ... . . . . . . . .. . . ................... ix

TABLES . . . . . . . . ...... . 0 . . . . xi

1 INTRODUCTION .......... .................... 1

2 SYSTEM MODELLING . ... ... . .... ... ... 3

2.1 Simple Gyro Model ... . . . . . . . . . . . . 3

2.2 Rebalance Loop Models. . . . . . .. . .. 5

2.3 Closed-Loop Equations ............... . . .. 8

2.3.1 Frequency Domain Descriptions . . . . . .. . 8

2.3.2 State Space Description .. . . . . . . .. . 10
3 ANALYSIS SOFTWARE . . . . . . . . . . . . . 12

4 SUMMARY OF RESULTS ...... . . . . . . . . . .. 12
4.1 Stability . . . . . . . . . . . . . . . . . . . . . 13

4.2 Time Domain Simulations . ......... ..... 17

4.2.1 Step Responses . . . . . . . . . . . . . . . . . 18

4.2.2 Steady-State Results . . . . ... . . . . . . .. 25

4.2.3 Roll Rate Tests . . . . . . . . . . . . . . . . . 27

4.3 Frequency Domain Characteristics . . . . . . . . . 31

4.3.1 Closed-Loop Frequency Response . . . . . . . . . 31

4.3.2 The Sensitivity Function . . . . . . . . . . . . 34

44.3.3 Nyquist Plots. . . . . . . . . . . . . . . . . 39

4.4 Effects Of A Setter Gyro Model . . . . . . . . . . 47

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . 48

6 RECOMMENDATAONS .... . . . . ........... 49

REFERENCES . . . . . . . . . . . . . . . . . . . . . 50

APPENDICES

A LIST OF COMPENSATOR PARAMETERS ..... .......... 51

vii



FIGURES

Fig. Title Page

1 The closed-loop system. . .... ....... . 9
2a RL-2 root locus varying p1 . . . . . . . . . . . . . . 16
2b RL-3 root locus varying p1. . . .  . . .. . . . . . . . . . . . .. 16
3 Root locus of special case C (p )Ds- varying p8  . . . 17
4a RL-2 step rate response (output ) . .... . . . . . 20
4b RL-3 step rate response (outputs) . . . . . . . . . . 20
5a RL-2 step rate response (pickoffs) . . . . . . . . . . 21
5b RL-3 step rate response (pickoffs) . . . . . . . . . . 21
6a RL-2 step acceleration response (outputs) . . . . . . 22
6b RL-3 step acceleration response (outputs) . . . . . . 22
7a RL-2 step acceleration response (cross-axis) . . . . . 23
7b RL-3 step acceleration response (cross-axis) . . . . . 23
8a RL-2 step acceleration response (pickoffs) . . . . . . 24
8b RL-3 step acceleration response (pickoffs) . . . . . . 24
9 Roll test, input position profile - -0c ..... . 28
10 Roll test, input rate profile - -w . 28
lla RL-2 roll error = -f - SOUT - .. . . 29
lib RL-3 roll error -0 C - JOUT • • 29
12a RL-2 roll test, integ ated cross-axis output - lOUT 30
12b RL-3 roll test, integrated cross-axis output - 1OUTY . 30
13a RL-2 closed-loop frequency response, magnitude & phase 32
13b RL-3 closed-loop frequency response, magnitude & phase 33
14a RL-2 sensitivity functions . . . . . . . . . . . . . . 36
14b RL-3 sensflivity functions . . . . . . . . . . . . 36
15a RL-2 maximum singular value sensitivity function . . . 38
15b RL-3 maximum singular value sensitivity function . . . 38
16 Nyquist "D-contour" . . . *.. . . . . . . • . . 40
17 System with one loop open . . . . . . . . . . . . . 41
18a RL-2 Nyquist plot . . . . . . . . . .. . . . . . . . 43
l8b RL-3 Nyquist plot . . . . . . . . . . . . . . . . . 43
19a RL-2 Nyquist plot, gain increased to pl-.27 . . . . . 44
19b RL-3 Nyquist plot, gain increased to pi=.46 • . . , . 44
20a RL-2 Nyquist plot, added phase of 37 degrees . . . . . 45
20b RL-3 Nyquist plot, added phase of 48 degrees ..... 45

ix



TABLES

Table Title Page

1 Nominal closed-loop pole locations . . . . . . . . . . 13

2 Results of root locus tests .. ...... .... 17

3 Steady-state values ............. .... 27

4 Stability margins . . . . . . . . . . . . . . . . . . 46

A

4- xi



1

1 INTRODUCTION

This report summarizes the results of an extensive study
of some major control-theoretic aspects of a particular
gyroscope/ rebalance loop configuration. The gyro was designed
by Litton Systems Canada and is similar to previous generations
of two degree-of-freedom, dry, tuned-rotor gyroscopes [1)
except for the way the flexures are made and machined into the
gimbals. These innovations have resulted in the potential to
produce a good quality gyro at a cost lower than current
comparable devices. Preliminary testing at the Defence Research
Establishment Ottawa (DREO) inertial navigation laboratory has

* been very encouraging and indicates that this instrument may be
very near to inertial grade quality. A summary of the gyro's

innovative features and the preliminary test results may be
found in (2].

Since the gyro was designed for strapdown applications, a
suitable electronic rebalance loop must be designed to keep the
rotor aligned with the gyro case as it rotates with the vehicle

it is strapped to. The loop receives signals from the gyro's
pickoff circuitry that indicate the angular displacement of the
rotor with respect to the case in two axes. The loop supplies
currents to the gyro's torquer coils that, through magnetic
interaction, apply a torque to the rotor causing it to precess
at a certain rate in a particular direction. If the loop is
designed properly, the rotor will stay more or less aligned to
the case at all times, and a measurement of the rate applied to
the case is available by measuring the current supplied to the

torquer coils.
Though simple in concept, the design of suitable rebalance

loops has proven to be a nontrivial problem. In particular, it
is a two-input, two-output control problem so it is difficult
to apply classical single-input, single-output control design
techniques directly. To do so naively would generally result in

1%
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a closed-loop system that has high interaction (a rate on one

input axis of the gyro produces a non-negligible output reading

on the other axis). In addition, the traditional tradeoffs of

tracking versus stability margin and bandwidth versus noise

rejection have to be addressed.

Rebalance loop designs can be divided into two major

groups - analog and digital. The digital designs are attractive

since they directly produce digital data for the system

computer. It can be argued, however, that for high accuracy

applications, analog loops are better. Unfortunately, the

analog information must be converted to digital form for the

computer and this is a difficult problem. That, however, is

beyond the scope of this study. Each of the preceding

categories can be divided into schemes that employ "cross-axis

compensation" and those that do not. Cross-axis compensation

attempts to eliminate or reduce the interaction between the two

axes of the gyro. Without it, the loop can be designed as if

there were two single-input, single-output loops. However the

results are better if the inherent multivariable nature of the.

system is taken into consideration.

Several research groups are currently studying various

rebalance loop techniques for the CSG-2. DKEO [3) has developed

a high performance analog rebalance loop (with and without

cross-axis compensation) to enable the inertial navigation lab

to make accurate performance tests of the CSG-2. Such a scheme

can then be evolved into any end-use system that employs this

gyro. It is the purpose of this report to analyze the DREO

rebalance loops and the gyro as a closed-loop control system.

This was done by studying the expected responses of the system

(in both time and frequency domains) and calculating various

measures of performance (tracking errors, sensitivity,
robustness, etc.). Extensive simulation software was developed

to do this. No attempt was made to model the expected but

unpredictable effects in the system, such as thermal effects in

both the gyro and rebalance loop, random gyro drifts, etc. Such
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effects can best be determined experimentally and will be done
so upon completion of the loops; this will be the subject of
subsequent DREO studies.

2 SYSTEM MODELLING

This section is a summary of the system models that were
used during the design and analysis of the rebalance loops.
Most of the derivations are omitted for brevity.

2.1 Simple Gyro Model

A complete description of a typical tuned-rotor gyro is
very complex. For an exhaustive tceatment of the subject, the
reader is referred to (43,15). In those papers, there are
several models of the gyro one can use depending on the degree
of accuracy required. For example, during gyro construction, it

may be important to know the effects of asymmetry in the
flexure spring constants. For the purposes of this study,
however, a very simple gyro model was used. This is justified
because a stable, closed-loop control system is generically
robust with respect to slight variations in the open-loop plant

dynamics (eg. classical gain/phase margins). Though this is noti true for multivarlable, open-loop unstable systems [6]v it is

true for the CSG-2 as it is open-loop stable.

The Ideal tuned-totor gyro is symmetric with respect to
its two input axes, has negligible internal damping forces, and
is running at exactly tuned speed. Then, all internal springforces "balance out" and the rotor will remain stationary in

inertial space should the case rotate about it and no rebalance

loop were ini place.

The equations of motion for the gyro are
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I T (S T (S)ex(S ) - 1 c + I Tx(S - -

1 H

I' Ty ( S) + --Y T S)eYs) - c- +

H + i [T):

or in matrix notation

e0 l X(S) 1 toC~)+ I/H 2 1 /l T(S

-Y s s C~ s . H/SI T (SM I y

where

s is the Laplace variable,

H is the angular momentum of the rotor,

I I is the moment of inectia of the rotor about

an axis through the plane of the rotor,

- TxDTy are torquer currents produced by the rebalance loop,

wcx,ocy are the angular rates applied to the gyro case,

0 ,e are the pickoff angles sensed by the rebalancex y
loop.

Note that an important constant that appears in the above

equations is (H/I). This term defines a natural frequency,

called the "nutation frequency" of the gyro and for the CSG-2,

this is 165. Hertz or 1036.7255 r lians/sec. Let the nutation

frequency be

'W :" l/I - 1036.7255 rad/s.

(The symbol :- or -: denotes a definition.) To normalize the

model, one can define

s" ±- s/ n -sI/Ri
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and absorb a factor of 1/H into the torquer current terms, TX
and Ty. This is realistic because these terms are included in
the gyro's "torquer scale factor", a constant that represents
the conversion of current to a rotation rate of the rotor due
to the torquer coils. The model of the gyro in the frequency
domain then becomes (dropping the implied functional dependence
on s)

If #rx and *ry are defined as the absolute angular positions of
the rotor;

[rx] T-

r Ls + 1 +

M: Pis)

IT.]

and the factor of 1/wn is ignored (this will be absorbed into
the gain term of the compensator), then a very compact
frequency domain description of the open-loop gyro results:

IT

ey -Y. iey e. .

2.2 aebalance Loop Models

The rebalance loop consists of a 2 by 2 transfer function
matrix with input pickoff signals, 90 and Oy, and output
torquer curtents# T. and Ty. In general terms, this is

ey
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represented by

T ()FC(s) -D(S)' (S)L 1  - ,s]
ex ( xT y(S) [D(s) -C(s) e (S)

e(s)-: K(s) 1e(S (2)

where D(s) represents the "direct-axis" compensation and C(s)

is the "cross-axis" compensation, so named because a torque

applied on the x-axis has a much stronger effect on the
y-pickoff angle than on the x. The outputs of the rebalance

loop are taken as the torquer currents since they provide a
measure of the torque required to realign the rotor with the

case, and hence a measure of the applied case rate. The outputs
are not the total torquer currents, however, only the portion

due to the direct-axis compensation:

OUT (S) Do]) [ey(S) (3)
OUT y(S) 0 : D(s)J *) ((S

DREO has developed two rebalance loop schemes dubbed RL-2

and RL-3 (3) and has applied for a patent on the designs (DND
invention 1416-86-001). The first, RL-2, has no cross-axis

compensation so C(s)=0. The direct-axis term, D(s), consists of
an integrator and a fourth-order, low-pass filter. Thus,

RL-2 : D(s) - G1 (S)G2 (s)G3 (s) ; C(s) = 0.

where, in the notation of (3],

G (S) 1) p1 + P2)

1 (
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2

G2 (s) - 2 P3 4S + P 2
S + 2P3p4s + 3

2

2 2Gs3(s) s + 2P6P7 s + p6

For a complete list of the parameters of D(s), the reader is

referred to Appendix A. Reference [31 describes in detail the

process by which the parameters were chosen. The basic approach

was to vary the parameters until the frequency response of the

closed-loop direct-axis transfer function had a fairly smooth

magnitude response (and a suitably high bandwidth) and good

phase response characteristics for a degree of stability

margin. In RL-2, there was no consideration given to the

closed-loop cross-axis transfer function so a relatively large

degree of interaction was expected.

The second loop, RL-3, employs the cross-axis term, C(s).

RL-3: D(s) - Gj(s)G 2 (s)G3(s)G4 (s);

C(s) - G1 (s)G2(s)G4(s)G5 (s)G6 (s)

where GI, G2, and G3 are as above and,

s2 + 2Ps~feS + 2
G 4 (S) " s2 +pfPe' + Pe (spin notch filter)

G4(s)~e + 2Pe

2

G 5(S) aT8.c
s + 2PdPcS + Pc

s 2 + 2paPgPbS + P 2
+ 2Pa9b + 2

G(s) a 2 2p 9 + p 2

Again, a complete list of the parameters is given in
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Appendix A. Note that the functions, Gi(s), are not necessarily

the same in RL-2 and RL-3. Note also that p, is the principle

gain term in the compensator; this is the term that absorbed

the i/wn from the plant model. The design procedure for RL-3

was essentially the same as that for RL-2 except the cross-axis

closed-loop function was also considered. In the next section,
it will be seen that perfect decoupling (that is, zero

interaction between the two gyro axes) can be obtained if C(s)

= s- D(s). However, this is not an acceptable solution as

Section 4.1 will note that this would result in an imaginary

axis pole - zero cancellation in the closed-loop transfer

function, causing internal oscillations and hence instability

(in modern control theory terms, this is an unobservable

unstable mode). The idea behind the design of the cross-axis

compensator in RL-3 was to make C(s) approximately equal to

s D(s) at low frequencies (over the bandwidth of the

instrument) to provide near perfect decoupling at these
frequencies, but to make C(s) sufficiently different from
s"D(s) at higher frequencies to provide stability. An

additional benefit of RL-3 is that it provides "cross-axis

acceleration cancellation", a concept described later.

2.3 Closed-Loop Equations

2.3.1 Frequency Domain Descriptions

The previous section established the two primary equations

of the system, equations (1) and (2). From these, the

closed-loop system can be drawn as in Figure 1 below.

Abbreviate notation slightly and define

cX LxG], T T [T OUT * OUT X * : [x]C : C e y T y
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D OUT

c c - e Tr ,.

Fig. 1: The closed-loop system

The resulting loop looks very much like a classical

*feedback system except that it must be remembered that each of

the signal lines is actually a vector of 2 signals and each

block is a 2 by 2 transfer matrix. The closed-loop equations

are developed with standard matrix algebra:

e-*C + *r
S-+C + PK0

* [I2 -PKJ M -4C

* = -[I2-P I c  (4)

- -1/s (I2-PKJ (c

* OUT - -D/s 1 2-PK]J0 c (5)

where 12 is the 2 by 2 identity matrix. Recall that D(s) has an

extra factor of I/wn in it as a result of normalizing the

plant. This is why s is also multiplied by l/wn in equation

(5).

It is these equations upon which much of the subsequent

analysis is based. If the matrices of P and K are substituted

into (5) and the operations carried out, the closed-loop

transfer functions are obtained:
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'1[OUT~ = -D ( 2 +C+i)+D -Dg+C c
OUT (s2+C)2 + (s+D) 2  Ds-C s(s 2 +C+l)+D Y(6)

As noted in the previous section, if C=Ds- then the

closed-loop cross-axis function is clearly 0 but if C=Ds- is

substituted in the direct loop, it can be shown that there will
be a pole - zero cancellation at s~=±jl, (i.e. a closed-loop

pole on the imaginary axis at s=±jwn) indicating a

destabilizing compensator.

2.3.2 State Space Description

It was convenient to express the system models in a state

space form (see any text on modern control theory). This
involves the formation of a vector x and matrices A, B, E of

appropriate dimensions so that the equations

i - (A]x + [Blu

y - jEJx

describe the time domain dynamic behavior between the input

vector u and the output vector y.

The nominal gyro model has a very simple state space

representation. Take the input vector, u, as the torquer

currents, T. The output vector, y, and the state vector, x, are

both defined as the absolute angular rates of the rotor, wr"

The measured output vector (the pickoff angle, 9), is the

integral of the difference between the rotor angular rate, w,

and the case angular rate, c. Hence,

i - (AIx + (BIT

W r ix " (7)

w e c r

where



-Rotor angular rate- [rx] rx

--10 -O n On 0 "i0

(A] - on 0 B] - [ wn (E] - [ 1

The Laplace transform of this model is exactly the

frequency domain model of the gyro, equation (1).

The state space matrix of the rebalance loop is much
laiger than that of the gyro so for brevity it is omitted. It
is a simple controllable canonical form of the transfer

function of the loop with the appropriate interconnections. It
has up to 22 states (for RL-3), has two inputs and two outputs,

and will simply be expressed as

a-(#)z + (VI)T - (Tiz (8)

where the matrices #, 1, and T are of dimensions 22 by 22, 22

by 2, and 2 by 22 respectively. The augmentation of systems (7)
and (8) results in the following closed-loop state space

description:

[ A ST 0 x i 0cx

.,E 0 0 0 - 2 [% y . 9

0 0 (9 H
The system in this form (which is the time domain

equivalent of 'the frequency domain description (6)) is more
amenable to computer simulations. Time domain simulations are

simple with a general differential equation solving program and

closed-loop stability can be determined at a glance from the



12

eigenvalues of the closed-loop state dynamic matrix (the eigen-

values are exactly the closed-loop poles).

3 ANALYSIS SOFTWARE

Extensive software was written to simulate the models

discussed in the previous section. Various frequency domain

properties of the closed-loop system could be examined from

equation (5) such as frequency responses, sensitivity, and an

attempt at multivariable Nyquist plots. Closed-loop time

responses are available from the propagation of equation (9)

for arbitrary rate inputs. Stability is determined from the

eigenvalues of the closed-loop state space matrix. Root locus

plots are also made by finding closed-loop pole locations as a

function of some parameter.

Since commercial software for eigenvalues or differential

equations was not immediately available at the time of the

study, educational software routines were adapted to perform

these functions. Consequently the programs are not guaranteed

to be efficient, though they are quite accurate.

Some of the analysis software, particularly for the

frequency domain calculations, was expanded to incorporate a

more complex dynamic model of the gyro which included internal

damping and time constant terms. This is examined briefly in a

later section.

4 SUEIhRY OF RESULTS

This section summarizes the major results of the study.

F, st, stability was verified by the location of the

closed-loop poles of the nominal system and the examination of
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root locus plots - the locus of the poles as a particular

parameter is changed. This gives some indication of sensitivity

to gain variations. Next, several time response simulations

were conducted and the most visible differences between RL-2

and RL-3 can be seen from these. Time domain steady-state

responses were calculated from the closed-loop transfer

functions and an application of the final value theorem.

Various frequency domain properties were calculated, including

closed-loop responses, Nyquist and sensitivity plots, and an

attempt at their interpretation is given.

4.1 Stability

The eigenvalues of the closed-loop state dynamic matrix of

Section 2.3.2 (eq. 9) immediately indicate the stability of the

system. Table 1 lists the closed-loop poles of the nominal

systems for both the RL-2 and RL-3 configurations. All the

poles must lie in the left half of the complex s-plane, (s: Re

s < 0), for stability. From the table, this is evident as all

real parts are negative.

Table 1: Nominal closed-loop pole locations

RL-2

EIGENVALUES OF CLOSED-LOOP MATRIX

Real part Imaginary part
--------------------------------------------

-97.20 1082.46
-97.20 -1082.46

-991.70 944.55
-991.70 -944.55
-861.65 952.70
-861.65 -952.70
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-701.75 324.55
-701.75 -324.55
-96.01 487.26
-96.01 -487.26

-199.76 200.63
-199.76 -200.63
-37.53 0.32
-37.53 -0.32

RL-3

EIGENVALUES OF CLOSED-LOOP MATRIX

Real part Imaginary part
- - - - - - - ---1152.12 1591.93

-1152.12 -1591.93
-1197.68 1466.09
-1197.68 -1466.09
-139.54 1259.83
-139.54 -1259.83
-496.29 1175.13
-496.29 -1175.13
-1062.68 600.50
-1062.68 -600.50

-89.99 885.03
-89.99 -885.03

-600.96 789.71
.-600.96 -789.71

-59.64 669.37
-59.64 -669.37
-46415 670.55
-46.15 -670.55

-615.28 108.96
-615.28 -108.96
-247.55 402.29
-247.55 -402.29
-235.95 379.70
-235.95 -379.70

* -37.20 1.25E-04
-37.20 -1.25E-04

First, notice that RL-3 has many more poles than RL-2
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because of the cross-axis compensation and a spin notch filter

(G4) that was added to each loop of RL-3 to reduce some of the

noise introduced by the spin motor. It is difficult to tell

"how stable" the two configurations are by pole locations. The

poles that appear the "least stable" are the ones at

approximately (-37±jO) because they are closest to the

imaginary axis of the s-plane.

However, a feel for stability is obtained by a simple

multivariable gain margin. For single-loop systems, recall, the

gain margin is the amount of pure gain that can be added to the

open-loop system before the closed-loop becomes unstable. This

system is a multi-loop configuration and it is not clear how to

determine a suitable measure of gain margin. (See [6) and the

references therein for current research in the area.) One

method is to simply change the gain of the open-loop system (by

changing the coefficient p, in the compensator model) and check

stability by the location of the closed-loop poles. This is a

direct multi-loop generalization of classical "root locus"

plots. Figures 2a and 2b show the location of the poles of the

two configurations as p, increases from its nominal value to a

destabilizing value, indicated by & pole crossing to the right

half plane. Each pole is shown with an arrow indicating its

direction of travel as p1  increases. The large dot on each

locus indicates the pole location for the nominal value of p1 '

approximately 0.2. Note that only the upper half of the s-plane

in shown. There is a symmetric set of poles in the lower half
plane due to their complex conjugate nature. These plots were

software generated, as the well known rules for constructing

the root locus of single-loop systems do not carry over to the

multi-loop case. The results of this test are indicated in

Table 2.
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Table 2": Results of root locus tests

Loop Nominal gain Destabilizing gain

RL-2 P1 - 0.2 pl - 0.27
RL-3 pl - 0.21 pl - 0.46

Table 2 indicates that the gain in RL-2 can be increased
35% (2.6 db) and that of RL-3 can be increased by 120% (6.8 db)

before the system is unstable. Both are good margins but

obviously RL-3 is better.
The root locus plot of a special case of RL-3 was briefly

examined. As noted in a previous section, if C(s) - s"D(s),

perfect cross-axis decoupling would result but the closed-loop

would have imaginary axis poles. This is demonstrated with an

appropriate choice of compensator parameters so that

C(s)-(ps)s"D(s) with p8  varied around 1.0. The list of

parameters used in this test can be found in Appendix A. The

resulting root locus plot is shown in Figure 3. Indeed, a pole

does cross to the right half plane as p8 exceeds 1.0 verifying

that the system is marginally unstable for C(s)-sD(s).

4.2 Time Domain Simulations

Simulations of the closed-loop systems for various input

case rates were conducted by numerically integrating the set of

differential equations (9) with a fourth order Runge-Kutta

algorithm. In all examples, the y case rate is set to zero, so

V the direct-axis response is indicated by the x-outputs 4nd the

cross-axis response is shown by the y-outputs. For inputs on

the y case axis, the results are identical except for the sign

of the cross-axis response.
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4.2.1 Step Responses

The system outputs, OUTX and OUT y and the pickoffs, Ox

and ey# are examined for both 9L-2 and RL-3 for step changes in

case rate (0 to 1 rad/s at t-0) and acceleration (0 to 1

.ad/s/s at t-0) on the x case input axis. The results are shown

in Figures 4 through 8. First note that the transients are all

practically negligible after about 0.1 seconds indicating a

very tight loop that should meet the requirements for a

strapdown gyro.

For a step rate case input, the direct outputs of each

loop (Figure. 4) exhibit an overshoot of about 30%, for a step
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rate input, and some slight ringing for a few milliseconds

which is quite acceptable. One of the principle differences

between RL-2 and RL-3 can be seen from these same figures in

their cross-axis transients. In RL-3 they are very much reduced

from what is exhibited in RL-2. This is the effect of the
"cross-axis compensation" that was designed into RL-3.

(Analogous comments for the pickoffs, Figure 5.)
For a step change in acceleration, the results are shown

in Figure 6. The direct-axis rate outputs blow up since they

indicate the input case rate, a linearly increasing function.

It is the cross-axis outputs that demonstrate the other major

advantage of RL-3. The cross-axis responses are magnified in

Figure 7 for effect. The y-output of RL-2 shows that a

steady-state rate was applied to the y-input when in fact there

was none. The magnitude of this "apparent" rate is equal to

S/ n times the magnitude of the input acceleration on the other

axis, where wn is the nutation frequency, 1036.7255 rad/s. In

RL-3, this effect completely dies out after a few milliseconds

(see Figure 7b and note the vertical scale is 10 times larger

than that of Figure 7a). This is called "acceleration

cancellation". The pickoff response to accelerations (Figure 8)

of RL-2 and RL-3 is much the same, differing in the magnitude

of the cross-axis transients. The x-pickoff exhibits the same

steady-state value in both loops so the actual *cancellation"

is done at the outputs, not the pickoffs. In the next section,

the expected steady-state output and pickoff values are

computed for different inputs to verify the simulations.

In summary, the time responses appear to be quite

satisfactory for both loops, the major differences being the

amount of cross-axis transient response (reduced by roughly a

factor of 10 in RL-3) and the steady-state acceleration effect

(the steady-s.ate output on the y- axis for an acceleration of

1 rad/s/s on the x-axis is -1/1036.7255 - -0.0009646 rad/s for

RL-2 but is zero for RL-3).
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4.2.2 Steady-State Results

Steady-state responses to step changes of input rates and

accelerations are computed with the frequency domain model and

the final value theorem. Briefly, the final value theorem

states that the steady-state time response, g(t4w), of a STABLE

system, L(s), to an input signal f(s) can be found by

lim g(t) - lim s L(s) f(s)
t~a s40

The input signal will be taken as

-- 1 *x . 1 1W cyJ 0 s n

where n-1 for a constant rate on the x case axis and n-2 for a

constant acceleration. The y input is fixed as 0. Since the

closed-loop stability of both RL-2 and RL-3 has been

established, it is valid to use the final value theorem. The

steady-state outputs of the closed-loop system (6) are found

by:

OUTxlt M OUT x ( s )

lim OUTy(t)~ [ i 1
IOUTy M S-00 OUTy (s)

-urn s -D G s (a + D~) -Ds+C 1j
s-O n (- 2+C)2 + (aD 2  [D - "(a2+C+l)+D t

As an example, the final outputs of RL-3 under constant

acceleration (n-2) on the x-axis are computed:

lim OUTyM li D

e OUT y M J 0 (9+c)2 + (ii) [ D J

-- -------- -- -- - --- -
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- lrm -D -D/s [W +C+i)/+1

P +C_ + 1 ]
M rn - SD 2 cs)+.~ (10)
s40 s C

S Ds

- lrn - n)s
s60 .1/n-C/(Ds)

The fact that 1/D(0) - 0, due to the integrator, has been used

to obtain (10). Now recall from the structure of D(s) and C(s)

that C(0)- (pl)(P 2 )(p8 ) and note that the limit (as s40) of

SD(s) is (pl)(p 2 ), so

lim OUT Ct)
t4w OUTyt) * - [1/fn-P8j

With a choice of P8-1/wn, zero steady-state y output for an

input x acceleration results. Of course, the x output has gone
to negative infinity since the input x rate has gone to plus

infinity.

Other outputs are computed similarly. The steady-state

pickoffs can be found in this way too since, from (5),

e(s) . 1/(D(s)wn ) OUT(s).

The results are compiled in Table 3.
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Table 3: Steady-state values

Input RL-2 RL-3

Pickoffs Outputs Pickoffs Outputs

e- k x  8y OUTx  OUT 8x 6 Y OUTx  OUT
i cx k rad/s

(Rate) 0 0 -k 0 0 0 -k 0

cx" k rad/s 2  -k 0 -k -k 0 -® 0*

(Acceleration)lPlP2Wn I___ n I'ln2)in n PIn

The steady-state results of RL-2 and RL-3 are identical

except for the cross-axis output for constant acceleration.

This is the acceleration cancellation that RL-3 provides. Note

that, under constant acceleration, the x pickoff is nulled by

neither loop; the acceleration cancellation is occurring at the

outputs, not the pickoffs. Note also that this cancellation

(the zero signified by * in the table) depends on p8 being

exactly equal to i/wn. Any deviation will result in a nonzero

output. All the other zeros in the table have no such

dependency. They were caused by multiplying a constant by an

Is, and then letting s go to zero.

4.2.3 Roll Rate Tests

This brief section demonstrates that the rebalance loop

causes no angular position error build-up as the gyro swings

through an orientation change. A very simple model of an

4 angular position profile of an aircraft roll is shown in Figure

9. This is made up of the following functions:

#CX t" 0.5t - -0.k5 sin nt 0 t Icx t)0- , 2 ,

1(0 2 t

This would correspond to an aircraft banking smoothly to a 1
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radian (57 degree)* roll angle in two seconds. The sinusoidal

form is chosen as it appears realistic and it has continuous

derivatives. Thus, the corresponding rates aad accelerations

are smooth as well. The input case rate profile, then, is

f0.5 -0.5 cos nt 0 < t < 2
W(t) -~0., 2 < t

and is shown in Tlgure 10. The output rate and integrated

output rate for both RL-2 and RL-3 trace the same curves as

their corresponding inputs at these scales. Figure 11 shows the

difference between the input angular position and the

integrated output rate, which is called the roll error. It can

be seen that during the maneuver, the roll error peaks at about

0.0006 rad (0.034 deg) for both RL-2 and RL-3 and returns to

zero after the maneuver is completed. The impact of this error

on navigation system accuracy will be minimal. For

completeness, the integrated cross-axis outputs are shown in

Figure 12. Note that the RL-3 response has been magnified

100,000 times, once again showing the superior cross-axis

compensation of RL-3 for low frequency inputs.

4.3 Frequency Domain Characteristics

4.3.1 Closed-Loop Frequency Response

The closed-loop frequency response of equation (6) is
repeated from (31. The magnitude and phase responses of the

direct and cross-axis closed loops for both RL-2 and RL-3 are

shown in Figure 13. (The direct closed-loop shown here is the

1,1 element of the closed-loop transfer matrix which is

identical to the 2,2 element. The cross loop shown is the 2,1

element; the 1,2 element is identical but for an additional
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phase shift of 180 degrees.)

Extensive interpretations of these are available in (3] so

only a few comments are made. First, the horizontal scale of

all frequency response plots is in terms of the log (base 10)

of the radian frequency. The nutation frequency, for example,

is at logi 0 (1036.7255)=3.016. The bandwidth of the direct loop

is around 80 Hz (2.70) for RL-3 and 90 Hz (2.75) for RL-2.

Bandwidth here is defined as the frequency at which the

magnitude drops to -3 db. The magnitude of the cross-axis

transfer function is generally much larger for RL-2 than for

RL-3. This is expected because the cross-axis compensator was

designed specifically to reduce the magnitude of the cross-axis

transfer function at low frequencies while leaving the high

frequency response alone to provide for a stability margin. The

deep notch in the magnitude function of RL-3 around 105.5 Hz

(2.82 on the log scale) is due to the spin notch filter in the

direct-axis.

4.3.2 The Sensitivity Function

A very powerful frequency domain tool to analyze control

systems is the sensitivity function. It provides at least two

valuable pieces of information. It gives an indication of,

first, how well the closed-loop system "tracks" its inputs, and

second, how "sensitive" the closed-loop system is to changes in

the open-loop.

Consider the system of Figure 1 as though it were a

single-loop system, with open-loop transfer function P(s)K(s)

and closed-loop function r(s) = M(S)Oc (s), M(s) := -P(s)K(s)/

SI (1-P(s)K(s)). The sensitivity function, S(s), is defined by

S(s) := m/ __ _W_7__1 3.

8(PK)/(PK) l-PK

For multivariable systems the open-loop is a matrix P(s)K(s)

and the closed-loop matrix, from (4), is (dropping the s)

--4
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-1
Or-M*c, M--PK(I-PK] . Though the mechanics of derivatives with

respect to matrices is more involved, the end result is the

definition of the multivariable (output) sensitivity function,

S(s) :-[I-PK

analogous to the single-loop case. But this function is exactly

the function in equation (4) relating the pickoff angle, 0, to

the input case angle, *c" Therefore if the magnitude of the

sensitivity function is kept small over certain frequency

ranges, then the magnitude of the pickoff angle (the tracking

error) will be small for input angular positions at those

frequencies, since 1e(jw)1<S(j) IJc(jW) .
The obvious question is how to measure the magnitude of a

matrix. The simplest way, since this system is only a 2 by 2

system that is in fact nearly symmetric (with equal diagonal

terms and only the signs of the off-diagonal elements

differing), is to look at the magnitudes of individual elements

to get direct and cross-axis sensitivity functions. This is

done in Figure 14 where the magnitudes of the direct and

cross-axis sensitivity functions are plotted as functions of

frequency for both RL-2 and RL-3.

The direct-axis sensitivity functions tend toward 0 (-=

db) at zero frequency (-- on the log scale) indicating zero

asymptotic tracking error of constant angular position inputs;

furthermore their slopes, as the frequency approaches zero, are

40 db/decade indicating that constant rate inputs are

asymptotically tracked as well (a 20 db/decade slope indicates

a 1/s in the loop to null angular position errors, a 40

db/decade slope indicates a 1/s2  in the loop to null rate

errors as well); their magnitudes are below -20db (.1 gain)

for frequencies up to approximately 30 rad/s or 5 Hz (1.5 on

log scale) which is very good low frequency tracking (the same

can be seen from the closed-loop frequency response; the

magnitude response is flat well beyond 5 Hz but the phase

starts to drop appreciably above 5 Hz creating sinusoidal
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steady-state tracking errors); the sensitivity is greater than

0 db for frequencies above 180 rad/s or 30 Hz (2.25 on the log

scale) indicating poor tracking of these frequencies. It is

noted that RL-3 has a little better direct-axis sensitivity

than RL-2 as it has a lower peak (6 db compared to 10 db).

The sensitivity in the frequency range from 30 to 80 Hz

(2.25 to 2.7) may be of some concern to the behavior of the

system, as this range is essentially within the closed-loop

bandwidth. Should there be any significant open loop

uncertainties in this range, the closed-loop response may not

be as expected since the system is fairly sensitive at these

frequencies. At lower frequencies the sensitivity is

significantly less and at higher frequencies, the closed-loop

bandwidth is exceeded so any effects would be attenuated. This

frequency range is typically outside most vehicle maneuver

capabilities and would only be of concern in a high vibration

environment and when there is significant uncertainty in the

models.

- Similar remarks can be made about the cross-axis

sensitivity function. The cross-axis sensitivity of RL-3 is

much lower, over the bandwidth, than that of RL-2. Again this

is one of the intentions of RL-3 - to reduce the magnitude and

the sensitivity of the cross-axis.

A more mathematically precise way to measure the size of a

matrix is through the use of a suitable norm such as the matrix

*2-norm. The 2-norm of a complex-valued matrix S(jo) is the

square root of the maximum eigenvalue of S*( j)S(jw) where

S*(jw) denotes the complex conjugate transpose of S(jw). This

quantity is known as the maximum singular value of S(jw) and so
the norm is often referred to as the singular value norm. In
Figure 15 the maximum singular values of the sensitivity

functions of RL-2 and RL-3 are plotted as functions of

frequency. These plots indicate essentially the same things as

the direct-axis sensitivity functions so they are discussed no
further. There is a partially developed theory to ensure the
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robust stability of a closed-loop system under certain plant

changes based on this singular value norm. The approach was

applied to this problem but the results were inconclusive for a

number of reasons, so the procedure was dropped.

In summary, the sensitivity functions of both loops appear

well behaved both in terms of tracking and parameter

sensitivity.

4.3.3 Nyquist Plots

The Nyquist plot, one of the most important tools for the

design and analysis of single-loop systems, carries over

logically to multivariable systems but its interpretation does

not. Two types of Nyquist plots were used. The first was the
well known multivariable form, i.e., the image of the Nyquist

"D-contour" under the map det(I-PK], where 'det" signifies

determinant, must satisfy certain encirclement criteria. For

the second type, one of the loops on one axis of the gyro was

broken and the resulting system was considered as single-input,

single-output.

For single-loop systems, the Nyquist criterion is well

known: the image of the standard D-contour under the map,

l+L(s), where L(s) is the open-loop transfer function, must

encircle the origin as many times as there are unstable poles

of L(s). Typically, one looks at the image under the map L(s)

and checks for encirclements of the (-l+jO) point which is

equivalent. For rigorous definitions of D-contour and
encirclements, see any text on classical control. If the system

is open-loop stable, the gain and phase margins are read

directly off the Nyquist plot.
For multivariable systems, the criterion is that the image

of the map dettI+L(sI] must encircle the origin as many times

as there are unstable poles of L(s), counted according to
Mctillan degree (see 171, for example). However, it is not

equivalent to plot the image of det[L(s)] and check the (-1,0)

, wr
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point because of the determinant function. The loop transfer
function for this problem is L(s)=-P(s)K(s) which is marginally
stable. It has 2 poles at the origin, due to the intogrators in
K(s), and a pole at each of +Jwn and -Jwn' due to the simple
model of the gyro adopted. These poles are avoided when forming
the D-contour as shown in Figure 16.

Im s-plane

Fig. 16: Nyquist "D-contour"

The multivariable Nyquist plots of both RL-2 and RL-3 were
computed and plotted but were found to be very complicated.
There were several circles of infinite radius due to the small
indentations around the open-loop poles on the imaginary axis.
It was found, by tracing the curves carefully, that there was
one clockwise and one counterclockwise encirclement of the

0origin for a net of zero enclrclements which equals the number
of open-loop poles in the right half plane. This verified that

the closed-loop was indeed stable but there was no direct
indication of a measure of gain or phase margin available from
it. The reason for this is the complex way in which the

determinant function intertwines the four transfer functions in
the matrix I-P(s)K(s). It was evident that there was some
stability margin because the multivariable Nyquist plot did not
go through the origin which would have indicated no margin.
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For the second form of the Nyquist plot, one of the

pickoff lines is opened while the other remains closed. In this

sense, the remaining system can be interpreted as single-input

- single-output and the traditional Nyquist criterion can be

applied. With the system as shown in Figure 17 (with the x

pickoff line broken), the following relations between a signal

f injected at the loop breaking point and the resulting signal

g at the plant output can be written:

g Y - -PK [ 4y]ry r

Oc 0 Tx r..X Orx g,

Fig. 17: System with one loop open

Upon substitution of the expressions of the plant and

compensator matrices and simplification, the following transfer

function results:

_ g(s) - L0(sfls)

LG(CE+D) + C2+ D2

The function Lo0 W will be called an "open-loop transfer

function" though it is, in fact, a result of a system that is
*half open" and "half closed". The image of the D-contour under

L (s) is then checked for encirclements of the (1,0) point.

Y
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Because of the "half open" structure, the Nyquist diagrams will

need special interpretation.

The new "open-loop" function has no right half plane poles

and it has only one imaginary axis pole, that being at the

origin due to the integrator in the unclosed portion of the

compensator. Then the Nyquist D-contour need only have one

indentation along the imaginary axis (at the origin). The full

Nyquist plot is then not necessary. It is sufficient to compute

the portion of the Nyquist plot due to the positive imaginary

axis (also called a polar plot) and ensure that it does not

enclose the (-1,0) point.
The new Nyquist plots for RL-2 and RL-3 are shown in

Figure 18. Neither encloses the (-1,0) point since they both

_; cross the real axis to the right of (-1,0), so closed-loop

stability is once again verified. Now however, they look
significantly more like classical Nyquist plots with somewhat

more reasonable notions of gain/phase margins.
The gain margin (how much pure gain can be added to the

open-loop before the closed-loop goes unstable) is directly

available from classical Nyquist plots by simply determining

how large the plot can be expanded before it goes through the
critical (-1,0) point. (Multiplying the open-loop by a pure

gain will just expand the real and imaginary parts of the

classical Nyquist plot equally; the shape will not change.)

Similarly the phase margin is determined by how large an angle
the plot can be rotated through before it goes through (-1,0).

Typical margins that classical designers try to achieve are 6

db gain margin and 60 degree phase margin.

The interpretations in this case are not quite so clear

but the following measure is proposed: break one of the pickoff

lines as above. to check the gain margin, replace the

compensator matrix, K(s), by aK(s), where 'a' is a positive
number, and increase 'a' until the Nyquist plot goes through
(-1,0); to find the phase margin, replace K(s) by e-bK(ms),

Og
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where 'b' is a positive number, and increase 'b' until the plot
goes through (-1,0). Note that the plots will not simply expand
or rotate as they did in the classical case, but rather they
will also change their shape slightly because the constants,
'a' or 'b' get embedded in the "open-loop" transfer function.
It is felt that this gives a reasonable feel for the degree of

stability that the closed-loop system will have. The results of
this test are shown in Figures 19 and 20 and tabulated below in
Table 4. The figures show the limiting cases; the smallest
additional gain or phase that causes the Nyquist plot to go

through (-1,0).

Table 4: Stability margins

Loop Gain Margin (db) Phase Margln(deg)

RL-2 2.6 37
RL-3 6.8 48
RL-3 (no spin notch) 7.4 50

in Table 4, a case of RL-3 without the spin notch filter

was included to show that its addition does reduce the
stability margin but not significantly. It can be noted that
.the gain margins as calculated here are the same as were found
in Section 4.1 when the root locus of tle closed-loop systems

as a function of p1 (the main compensator gain) was computed

since exactly the same parameter was changed here. Both of the
systems have some stability margin wiith RL-3 being very close
to what would be considered a good design by classical

designers. RL-2, on the other hand, seems to lack a sufficient
stability margin. This fact was recognized early in the design
of the rebalance loops and was viewed as an acceptable penalty
to achieve a large bandwidth in RL-2. At the present time,
there is another version of RL-2 being tested that has a
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significantly lower, bandwidth but a much better stability

margin.

There is another observation that may be nade about these

Nyquist plots. When additional phase was added to RL-2 or RL-3

(Fig. 20), the lobe around the origin became "stretched" -

points that were close together for the nominal loop (Figure

19) became farther apart (these plots were made with the same
frequency spacing). This effect seems to be an indication of

reduced stability margin but it is not well understood at the

present time.

In summary, the Nyquist plots indicate that both loops

have reasonable stability margin, RL-3 being superior.

4.4 Effects of a Better Gyro Model

A short study of the effects of the gyro's internal

damping and time constant was conducted. This involved using a

more complex gyro model. The model chosen was equation (58) of

(41. This model included all damping forces in the gyro, which
would cause the rotor to slowly align with the case if there

were no rebalance loop around the gyro (in the ideal gyro, the

rotor would never follow the case). This effect has a time
constant of about 100 seconds for the CSG-2. A spin speed
slightly different from the tuned speed will result in some

internal torques that are not "cancelled out", creating extra

dynamics. These effects are easily incorporated into the model

but it is very difficult to accurately determine numerical
values that approximate the real gyro without sufficient

experimental data. Some crude experiments were conducted with a

prototype CSG-2 to get a feel for reasonable values. These were

then inserted into the model and frequency and time response

simulations were rerun. The resulting figures vary

Ansignificantly with what has been determined with the use of

the simpler model. This is not surprising as the excellent

stability and sensitivity properties of the closed-loop systems



48

whave already been demonstrated. It is difficult to accurately

assess the results without more gyro test data, and since the
...loops have good sensitivity and stability prc;perties, a

rigorous investigation was not pursued.

CONCLUSIONS

A combination of classical and modern control theory has

_ been applied to analyze several important properties of the
\.-rebalance loops designed at DREO for the CSG-2 gyro. It has

* .been determined that overall, the loops should perform very

'well. An examination of time responses show that the loops can
handle well over 1 rad/s step rate changes and maintain the
pickoff angles to less than half a degree (the rotor might hit

its stops if the pickoff angle were much larger). The roll
rate test showed no steady state contribution to navigation

system error due to the rebalance loops. The frequency
responses reveal closed-loop bandwidths of 80 to 90 Hz which

should be quite adequate in dynamic environments. The

sensitivity plots indicate good low frequency tracking

capabilities as well as low sensitivity to parameter variations
or unmodelled dynamic, except possibly in the frequency range

from 30 to 120 Hz. The Nyquist plots show good stability
margins that indicate the systems will remain stable under

large parameter variations (2 to 7 db gain margin, 40 to 50

degree phase margin).

Several differences have been pointed out between RL-2,

which employs no cross-axis compensation, and RL-3 which does.
The notable advantages of RL-3 over RL-2 are: one, reduced

cross-axis interaction (by a factor of 10 or more); two,

elimination of the phenomenon of a steady-state acceleration on

one axis creating a nonzero output on the other (in RL-2 this

effect was roughly 0.001 times the magnitude ot the

------ =--- N
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acceleration); and* three, an increased stability margin

(roughly double) for a loop of approximately the same

bandwidth. The price paid by RL-3 is, one, increased circuit

component count, and two, amplifier drift problems in the

cross-axis amps that may add to the bias drift of the gyro.

The cross-axis amps may drift because they are not caged by the

integrators in the direct-axis that remove any drifts when the

loops are closed.

Further testing is to be carried out to determine the

necessity and/or usefulness of the cross-axis compensation, in

light of the higher achievable performance and extra

electronics problems involved.

6 RECO*WENDATIONS

it io cecommended that. the RL-3 scheme be the main loop

incorporated in* any 'prototype system that uses the CSG-2,

chiefly for. it-s superior performance in high dynamic
environments. It is also suggested that an interchangeable RL-2

type ivop also be kept apthat a practical comparison of the.

two qchetfes,.can~ be ale at the system Jevel, i.e., effect': on,

inavigation o)r A.03 (attitude,- heading reference system)

accuracy.. in thin wAy . can .be quickly determined if the

higher Performance or -the extra electronics problemts are.
dominant. Some- attention should he -paid-to the perforrnance of

the .ocs inth-30} to -Oll rgion to ensure that the higher

sensi tivity in- this- range ir not_detrimental.

.'4 ....
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APPENDIX A

LIST OF COMPENSATOR PARAMETERS

RL-2 Parameters

0.2 P1 MAIN GAIN
31.4159 P2 INTEGRATOR CORNER FREQ (rad/s)
1255.13 P3 DEMOD LPF. CORNER FREQ (rad/s)
0.707 P4 DEMOD LPF. DAMPING
856.335 P6 NUTATION LPF. CORNER FREQ (rad/s)
0.707 P7 MUTATION LPF. DAMPING

RL-*3 Parameters

0.21 P.1 MAIN GAIN
31.4159 P2 IW TFGRATOR CORNER FREQ (rad/s)
1332.03 P3 DE14OI LPF* CORNER FREQ (rad/s)
0.55. P4. DEMOD L!?F. OAMPXNG
0. V SPiN NOTCH DEPTH
890..956 P6 NUTATl0N ..- ,CO0RNER FREQ (rad/s)
0.7 PT NV,TION...PF.. DAMPING
1.0 PO CROSS AXIS N
.1036.73 P§ MIJTAIIO N OTCHI F!EQ (rad/s)

e 4005 PA NUTfAIONWOTCUi r).CPTH
'0.45 PB NUTATION OQTI DAR1TW13N(
1745.4? PC' DERIVATOR COj.NrR .jREQ d.(ad/s)
0.65 -P&' DERIVATOR DAKP I NG.
662.876 PE SPIW NOTCH FREQ iad/j),
0. 05 PP wspIN NOTCH DANPI9
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Parameters to test C = D s

0.2 P1 MAIN GAIN
31.1459 P2 INTEGRATOR CORNER FREQ (rad/s)
1255.13 P3 DEMOD LPF. CORNER FREQ (rad/s)
0.707 P4 DEMOD LPF. DAMPING
1.0 P5 SPIN NOTCH DEPTH
856.335 P6 MUTATION LPF. CORNER FREQ (rad/s)
0.707 P7 MUTATION LPF. DAMPING
1.0 P8 CROSS AXIS GAIN
929.911 P9 MUTATION NOTCH FREQ (rad/s)
1.0 PA MUTATION NOTCH DEPTH
0.4 PB NUTATION NOTCH DAMPING
856.335 PC DERIVATOR CORNER FREQ (rad/s)
0.707 PD DERIVATOR DAMPING
662.876 PE SPIN NOTCH FREQ (rad/s)
0.05 PF SPIN NOTCH DAMPING

Note that a notch depth (P5,PA) parameter of 1.0 means the
notch filter is defeated.

?'' wIv
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